OTC Modeling Committee Update OTC and MANEVU Stakeholders Meeting April 21, 2023

OTC Modeling Committee

Chairs, Kevin Civerolo and Margaret LaFarr, NYS DEC Committee Lead, Alexandra Karambelas, OTC/NESCAUM

OZONE TRANSPORT COMMISSION

Accomplishments

- Tracked current OTR O₃ levels and preliminary attainment status
- Completed 2016 & 2023 simulations with CMAQ and CAMx V1 platform (Emissions Collaborative), with ERTAC v16.1
- Completed V1 Technical Support Document OTC website February 2023
- Completed 2016/2023/2026 simulations with CMAQ and CAMx EPA V2 platform with V3 updates to CMV & solvents ("V2/V3"), with ERTAC v16.2
- Completed tagged emissions contribution modeling
- Completed 2018/19 episodic modeling on high electric demand days (HEDD), and relative impacts of NOx vs VOC reductions

2022 OTR Statistical Information

- Highest 8-hour average was 91 ppb found at East Matunuck, RI
- 74 sites have exceeded 70 ppb at least once, with 6 sites exceeding 84 ppb
- 7 sites in NYC NAA, 1 site in the Phila. NAA, and 1 site in the Greater CT NAA have a Preliminary 2020-22 DV > 2015 NAAQS

Data prepared by Marcus Chase (NH DES)

"2022 Ambient Ozone Concentrations - Relative to the 2008 and 2015 8-Hr Ozone NAAQS" – https://experience.arcgis.com/experience/502feb600b32460caee6bbd10f8f4559/page/2015-O3-NAAQS---Prelim-DV//

Data through October 2022 (Credit: Mark Prettyman and DE DNREC. Data available at https://experience.arcgis.com/experience/502feb600b32460caee6bbd1 0f8f4559/page/2015-O3-NAAQS---Prelim-DV/)

Preliminary 2020-22 Design Values

2023 Modeling – V1 vs V2/V3

CMAQ v5.3.1, 12OTC2, 2016 v1(fi), ERTAC, Apr to Oct

CMAQ v5.3.3, 12OTC2, 2016fj_v2+v3, ERTAC.RCU, Apr to Oct

2023 Modeling – CMAQ vs CAMx

CMAQ v5.3.3, 12OTC2, 2016fj_v2+v3, ERTAC.RCU, Apr to Oct

CAMx v7.20, 12OTC2, 2016fj_v2+v3, ERTAC.RCU, Apr to Oct

Model-Projected 2023 Design Values

	2020-22	OTC V1	OTC V1	OTC V2/V3	OTC V2/V3	EPA V3
	Preliminary	CMAQ	CAMx	CMAQ	CAMx	CAMx
Greenwich, CT	77	78.5	74.5	74.6	73.4	71.6
Danbury, CT	71	69.1	69.3	69.3	69.5	67.3
Stratford, CT	81	75.3	75	74.7	75.1	72.9
Westport, CT	80	75.6	76	76	75.6	73.3
Middletown, CT	73	69.2	70.3	69.6	70.5	68.7
Madison, CT	79	71	72.3	71.1	72.7	70.5
Groton, CT	72	71.3	68	71	67.8	65.5
Babylon, NY	74	67.6	68.2	67.7	68.5	66.2
Bristol, PA	72	69.3	71.1	70.2	71.6	67.9

*3x3 no water values

Urban Nonpoint Solvent VOCs Emissions

Regions	Solvents	Nonpoint	Nonroad	Onroad	Others
ΝΥΜΑ	55.4%	14.0%	15.8%	10.3%	4.5%
NYNJCT (NAA)	52.3%	13.2%	15.3%	10.8%	8.4%
OTR (NAAs)	49.7%	11.8%	15.5%	11.5%	11.5%

Nonpoint solvent contributions to total anthropogenic VOC emissions

8

Top 6 SCC contributions to total nonpoint solvent VOC emissions

Regions	2460100000	2460200000	2460500000	2460600000	2401001000	2425000000	Others
	Consumer Products: Personal Care Products	Consumer Products: Household Products	Consumer Products: Aerosol Coatings and Paint Thinners	Consumer Products: Adhesives and Sealants	Architectural Coatings (not including traffic markings and IM)	Graphic Arts	Other 33 SCCs
NYMA	26.2%	18.5%	10.9%	12.6%	8.4%	7.4%	16.0%
NYNJCT (NAA)	22.9%	17.5%	10.6%	8.5%	8.6%	8.5%	23.4%
OTR (NAAs)	22.6%	17.0%	10.2%	9.0%	8.6%	7.6%	25.0%

July 7th: One Day MDA8 O₃ Differences from Base

- Example of impacts on a high O₃ day
- Contributions from peaking units exceed 2 ppb
- Highest emitting peaking units increase MDA8 O₃ by 2+ ppb in localized in-land and coastal areas
- Lowest emitting peaking units still lead to some isolated instances of higher MDA8 O₃ by 2 ppb

Changing NO_X Sensitivity with Emissions Reductions

- Cut on-road emissions by 90% (all pollutants) and layered with HEDD prioritizing cleanest dispatched units
- By applying both measures in tandem, formaldehyde to NO_x ratios (FNR) move from NO_x saturated to transitional in NYC and weakly NO_x limited to strongly NO_x limited in coastal CT.

Additional Modeling Committee Initiatives

- V2/V3 supplemental addendum to the V1 Technical Support Document
- Track field campaigns in the region in 2023 AEROMMA, CUPiDS, GOTHAAM, STAQS, and others (AGES+) – Lukas Valin (EPA)
- Work with EPA, states, MJOs on next modeling platform likely 2022 base year, with future years 2026, early 2030s, 2038
- Collaborate with SAS (e.g., residential heating, solvents) and MSC (e.g., heavy, medium, and light-duty vehicles)
- Continue investigation of O₃ limiting regimes
- Investigate model updates, boundary conditions, chemical mechanism, etc.

Thank you!

Model Committee Chairs

 Kevin Civerolo and Margaret LaFarr, NYSDEC (kevin.civerolo@dec.ny.gov and margaret.lafarr@dec.ny.gov)

OTC Committee Lead

 Alexandra Karambelas, OTC/NESCAUM (<u>akarambelas@nescaum.org</u>)

Emissions Inventory Lead

• Susan McCusker, MARAMA (<u>smccusker@marama.org</u>)